Engineering

Home The Empire State Building Search the site

History & Culture

View More

Humanities › History & Culture

The Empire State Building

Empire State Building at night
John Moore/Getty Images
History and Culture

History & Culture

View More by Jennifer Rosenberg Updated June 26, 2019

Ever since it was built, the Empire State Building has captured the attention of young and old alike. Every year, millions of tourists flock to the Empire State Building to get a glimpse from its 86th and 102nd-floor observatories. The image of the Empire State Building has appeared in hundreds of ads and movies. Who can forget King Kong’s climb to the top or the romantic meeting in An Affair to Remember and Sleepless in Seattle? Countless toys, models, postcards, ashtrays, and thimbles bear the image if not the shape of the towering Art Deco building.

Why does the Empire State Building appeal to so many? When the Empire State Building opened on May 1, 1931, it was the tallest building in the world – standing at 1,250 feet tall. This building not only became an icon of New York City, but it also became a symbol of twentieth-century man’s attempts to achieve the impossible.

The Race to the Sky

When the Eiffel Tower (984 feet) was built in 1889 in Paris, it taunted American architects to build something taller. By the early twentieth century, a skyscraper race was on. By 1909 the Metropolitan Life Tower rose 700 feet (50 stories), quickly followed by the Woolworth Building in 1913 at 792 feet (57 stories), and soon surpassed by the Bank of Manhattan Building in 1929 at 927 feet (71 stories).

When John Jakob Raskob (previously a vice president of General Motors) decided to join in the skyscraper race, Walter Chrysler (founder of the Chrysler Corporation) was constructing a monumental building, the height of which he was keeping secret until the building’s completion. Not knowing exactly what height he had to beat, Raskob started construction on his own building.

In 1929, Raskob and his partners bought a parcel of property at 34th Street and Fifth Avenue for their new skyscraper. On this property sat the glamorous Waldorf-Astoria Hotel. Since the property on which the hotel was located had become extremely valuable, the owners of the Waldorf-Astoria Hotel decided to sell the property and build a new hotel on Park Avenue (between 49th and 50th Streets). Raskob was able to purchase the site for approximately $16 million.

The Plan to Build the Empire State Building

After deciding on and obtaining a site for the skyscraper, Raskob needed a plan. Raskob hired Shreve, Lamb & Harmon to be the architects for his new building. It is said that Raskob pulled a thick pencil out of a drawer and held it up to William Lamb and asked, “Bill, how high can you make it so that it won’t fall down?”1

Lamb got started planning right away. Soon, he had a plan:

The logic of the plan is very simple. A certain amount of space in the center, arranged as compactly as possible, contains the vertical circulation, mail chutes, toilets, shafts and corridors. Surrounding this is a perimeter of office space 28 feet deep. The sizes of the floors diminish as the elevators decrease in number. In essence, there is a pyramid of non-rentable space surrounded by a greater pyramid of rentable space. 2

But was the plan high enough to make the Empire State Building the tallest in the world? Hamilton Weber, the original rental manager, describes the worry:

We thought we would be the tallest at 80 stories. Then the Chrysler went higher, so we lifted the Empire State to 85 stories, but only four feet taller than the Chrysler. Raskob was worried that Walter Chrysler would pull a trick – like hiding a rod in the spire and then sticking it up at the last minute. 3

The race was getting very competitive. With the thought of wanting to make the Empire State Building higher, Raskob himself came up with the solution. After examining a scale model of the proposed building, Raskob said, “It needs a hat!”4 Looking toward the future, Raskob decided that the “hat” would be used as a docking station for dirigibles. The new design for the Empire State Building, including the dirigible mooring mast, would make the building 1,250 tall (the Chrysler Building was completed at 1,046 feet with 77 stories).

Who Was Going to Build It

Planning the tallest building in the world was only half the battle; they still had to build the towering structure and the quicker the better. For the sooner the building was completed, the sooner it could bring in income.

As part of their bid to get the job, builders Starrett Bros. & Eken told Raskob that they could get the job done in eighteen months. When asked during the interview how much equipment they had on hand, Paul Starrett replied, “Not a blankety-blank [sic] thing. Not even a pick and shovel.” Starrett was sure that other builders trying to get the job had assured Raskob and his partners that they had plenty of equipment and what they didn’t have they would rent. Yet Starrett explained his statement:

Gentlemen, this building of yours is going to represent unusual problems. Ordinary building equipment won’t be worth a damn on it. We’ll buy new stuff, fitted for the job, and at the end sell it and credit you with the difference. That’s what we do on every big project. It costs less than renting secondhand stuff, and it’s more efficient.

5

Their honesty, quality, and swiftness won them the bid.

With such an extremely tight schedule, Starrett Bros. & Eken started planning immediately. Over sixty different trades would need to be hired, supplies would need to be ordered (much of it to specifications because it was such a large job), and time needed to be minutely planned. The companies they hired had to be dependable and be able to follow through with quality work within the allotted timetable. The supplies had to be made at the plants with as little work as possible needed at the site. Time was scheduled so that each section of the building process overlapped – timing was essential. Not a minute, an hour, or a day was to be wasted.

Demolishing Glamor

The first section of the construction timetable was the demolition of the Waldorf-Astoria Hotel. When the public heard that the hotel was to be torn down, thousands of people sent requests for mementos from the building. One man from Iowa wrote asking for the Fifth Avenue side iron railing fence. A couple requested the key to the room they had occupied on their honeymoon. Others wanted the flagpole, the stained-glass windows, the fireplaces, light fixtures, bricks, etc. Hotel management held an auction for many items they thought might be wanted.6

The rest of the hotel was torn down, piece by piece. Though some of the materials were sold for reuse and others were given away for kindling, the bulk of the debris was hauled to a dock, loaded onto barges, and then dumped fifteen miles into the Atlantic Ocean.

Even before the demolition of the Waldorf-Astoria was complete, excavation for the new building was begun. Two shifts of 300 men worked day and night to dig through the hard rock in order to make a foundation.

Raising the Steel Skeleton of the Empire State Building

The steel skeleton was built next, with work beginning on March 17, 1930. Two-hundred and ten steel columns made up the vertical frame. Twelve of these ran the entire height of the building (not including the mooring mast). Other sections ranged from six to eight stories in length. The steel girders could not be raised more than 30 stories at a time, so several large cranes (derricks) were used to pass the girders up to the higher floors.

Passersby would stop to gaze upward at the workers as they placed the girders together. Often, crowds formed to watch the work. Harold Butcher, a correspondent for London’s Daily Herald described the workers as right there “in the flesh, outwardly prosaic, incredibly nonchalant, crawling, climbing, walking, swinging, swooping on gigantic steel frames.”7

The riveters were just as fascinating to watch, if not more so. They worked in teams of four: the heater (passer), the catcher, the bucker-up, and the gunman. The heater placed about ten rivets into the fiery forge. Then once they were red-hot, he would use a pair of three-foot tongs to take out a rivet and toss it – often 50 to 75 feet – to the catcher. The catcher used an old paint can (some had started to use a new catching can made specifically for the purpose) to catch the still red-hot rivet. With the catcher’s other hand, he would use tongs to remove the rivet from the can, knock it against a beam to remove any cinders, then place the rivet into one of the holes in a beam. The bucker-up would support the rivet while the gunman would hit the head of the rivet with a riveting hammer (powered by compressed air), shoving the rivet into the girder where it would fuse together. These men worked all the way from the bottom floor to the 102nd floor, over a thousand feet up.

When the workers finished placing the steel, a massive cheer rose up with hats waiving and a flag raised. The very last rivet was ceremoniously placed – it was solid gold.

Lots of Coordination

The construction of the rest of the Empire State Building was a model of efficiency. A railway was built at the construction site to move materials quickly. Since each railway car (a cart pushed by people) held eight times more than a wheelbarrow, the materials were moved with less effort.

The builders innovated in ways that saved time, money, and manpower. Instead of having the ten million bricks needed for construction dumped in the street as was usual for construction, Starrett had trucks dump the bricks down a chute which led to a hopper in the basement. When needed, the bricks would be released from the hopper, thus dropped into carts which were hoisted up to the appropriate floor. This process eliminated the need to close down streets for brick storage as well as eliminated much back-breaking labor of moving the bricks from the pile to the bricklayer via wheelbarrows.9

While the outside of the building was being constructed, electricians and plumbers began installing the internal necessities of the building. The timing for each trade to start working was finely tuned. As Richmond Shreve described:

When we were in full swing going up the main tower, things clicked with such precision that once we erected fourteen and a half floors in ten working days – steel, concrete, stone and all. We always thought of it as a parade in which each marcher kept pace and the parade marched out of the top of the building, still in perfect step. Sometimes we thought of it as a great assembly line – only the assembly line did the moving; the finished product stayed in place.

10

The Empire State Building Elevators

Have you ever stood waiting in a ten – or even a six-story building for an elevator that seemed to take forever? Or have you ever gotten into an elevator and it took forever to get to your floor because the elevator had to stop at every floor to let someone on or off? The Empire State Building was going to have 102 floors and expected to have 15,000 people in the building. How would people get to the top floors without waiting hours for the elevator or climbing the stairs?

To help with this problem, the architects created seven banks of elevators, with each servicing a portion of the floors. For instance, Bank A serviced the third through seventh floors while Bank B serviced the seventh through 18th floors. This way, if you needed to get to the 65th floor, for example, you could take an elevator from Bank F and only have possible stops from the 55th floor to the 67th floor, rather than from the first floor to the 102nd.

Making the elevators faster was another solution. The Otis Elevator Company installed 58 passenger elevators and eight service elevators in the Empire State Building. Though these elevators could travel up to 1,200 feet per minute, the building code restricted the speed to only 700 feet per minute based on older models of elevators. The builders took a chance, installed the faster (and more expensive) elevators (running them at the slower speed) and hoped that the building code would soon change. A month after the Empire State Building was opened, the building code was changed to 1,200 feet per minute and the elevators in the Empire State Building were sped up.

The Empire State Building Is Finished!

The entire Empire State Building was constructed in just one year and 45 days – an amazing feat! The Empire State Building came in on time and under budget. Because the Great Depression significantly lowered labor costs, the cost of the building was only $40,948,900 (below the $50 million expected price tag).

The Empire State Building officially opened on May 1, 1931, to a lot of fanfare. A ribbon was cut, Mayor Jimmy Walker gave a speech, and President Herbert Hoover lit up the tower with a push of a button.

The Empire State Building had become the tallest building in the world and would keep that record until the completion of the World Trade Center in New York City in 1972.

Notes

  1. Jonathan Goldman, The Empire State Building Book (New York: St. Martin’s Press, 1980) 30.
  2. William Lamb as quoted in Goldman, Book 31 and John Tauranac, The Empire State Building: The Making of a Landmark (New York: Scribner, 1995) 156.
  3. Hamilton Weber as quoted in Goldman, Book 31-32.
  4. Goldman, Book 32.
  5. Tauranac, Landmark 176.
  6. Tauranac, Landmark 201.
  7. Tauranac, Landmark 208-209.
  8. Tauranac, Landmark 213.
  9. Tauranac, Landmark 215-216.
  10. Richmond Shreve as quoted in Tauranac, Landmark 204.

Bibliography

  • Goldman, Jonathan. The Empire State Building Book. New York: St. Martin’s Press, 1980.
  • Tauranac, John. The Empire State Building: The Making of a Landmark. New York: Scribner, 1995.

This is the history of American aerospace manufacturing company Boeing.

History

Boeing Airplane Company Posted November 5th 2019

Before 1930

William E. Boeing in 1929

William E. Boeing in 1929

In 1909 William E. Boeing, a wealthy lumber entrepreneur who studied at Yale University, became fascinated with airplanes after seeing one at the Alaska-Yukon-Pacific Exposition in Seattle. In 1910 he bought the Heath Shipyard, a wooden boat manufacturing facility at the mouth of the Duwamish River, which later became his first airplane factory.[2] In 1915 Boeing traveled to Los Angeles to be taught flying by Glenn Martin and purchased a Martin “Flying Birdcage” seaplane (so called because of all the guy-wires holding it together). The aircraft was shipped disassembled by rail to the northeast shore of Lake Union, where Martin’s pilot and handyman James Floyd Smith assembled it in a tent hangar. The Birdcage was damaged in a crash during testing, and when Martin informed Boeing that replacement parts would not become available for months, Boeing realized he could build his own plane in that amount of time. He put the idea to his friend George Conrad Westervelt, a U.S. Navy engineer, who agreed to work on an improved design and help build the new airplane, called the “B&W” seaplane. Boeing made good use of his Duwamish boatworks and its woodworkers under the direction of Edward Heath, from whom he bought it, in fabricating wooden components to be assembled at Lake Union. Westervelt was transferred to the east coast by the Navy before the plane was finished, however, Boeing hired Wong Tsu to replace Westervelt’s engineering expertise, and completed two B&Ws in the lakeside hangar. On June 15, 1916, the B&W took its maiden flight. Seeing the opportunity to be a regular producer of airplanes, with the expertise of Mr. Wong, suitable productive facilities, and an abundant supply of spruce wood suitable for aircraft, Boeing incorporated his airplane manufacturing business as “Pacific Aero Products Co” on July 15, 1916.[3][4] The B&W airplanes were offered to the US Navy but they were not interested, and regular production of airplanes would not begin until US entry into World War I a year later. On May 9, 1917, Boeing changed the name to the “Boeing Airplane Company”.[5][6] Boeing was later incorporated in Delaware; the original Certificate of Incorporation was filed with the Secretary of State of Delaware on July 19, 1934.

Replica of Boeing Model 1, at the Museum of Flight

Replica of Boeing’s first plane, the Boeing Model 1, at the Museum of Flight

In 1917, company moved its operations to Boeing’s Duwamish boatworks, which became Boeing Plant 1. The Boeing Airplane Company’s first engineer was Wong Tsu, a Chinese graduate of the Massachusetts Institute of Technology hired by Boeing in May 1916.[7] He designed the Boeing Model C, which was Boeing’s first financial success.[8] On April 6, 1917, the U.S. had declared war on Germany and entered World War I. With the U.S. entering the war, Boeing knew that the U.S. Navy needed seaplanes for training, so Boeing shipped two new Model Cs to Pensacola, Florida, where the planes were flown for the Navy. The Navy liked the Model C and ordered 50 more.[9] In light of this financial windfall, “from Bill Boeing onward, the company’s chief executives through the decades were careful to note that without Wong Tsu’s efforts, especially with the Model C, the company might not have survived the early years to become the dominant world aircraft manufacturer.”[8]

When World War I ended in 1918, a large surplus of cheap, used military planes flooded the commercial airplane market, preventing aircraft companies from selling any new airplanes, driving many out of business. Others, including Boeing, started selling other products. Boeing built dressers, counters, and furniture, along with flat-bottom boats called Sea Sleds.[9]

In 1919, the Boeing B-1 flying boat made its first flight. It accommodated one pilot and two passengers and some mail. Over the course of eight years, it made international airmail flights from Seattle to Victoria, British Columbia.[10] On May 24, 1920, the Boeing Model 8 made its first flight. It was the first airplane to fly over Mount Rainier.[11]

P-12 air superiority fighter

In 1923, Boeing entered competition against Curtiss to develop a pursuit fighter for the U.S. Army Air Service. The Army accepted both designs and Boeing continued to develop its PW-9 fighter into the subsequent radial-engined F2B F3B, and P12/F4B fighters,[12] which made Boeing a leading manufacturer of fighters over the course of the next decade.

In 1925, Boeing built its Model 40 mail airplane for the U.S. government to use on airmail routes. In 1927, an improved version, the Model 40A was built. Th Model 40A won the U.S. Post Office‘s contract to deliver mail between San Francisco and Chicago. This model also had a cabin to accommodate two passengers.[13]

That same year, Boeing created an airline named Boeing Air Transport, which merged a year later with Pacific Air Transport and the Boeing Airplane Company. The first airmail flight for the airline was on July 1, 1927.[13] In 1929, the company merged with Pratt & Whitney, Hamilton Aero Manufacturing Company, and Chance Vought under the new title United Aircraft and Transport Corporation. The merger was followed by the acquisition of the Sikorsky Manufacturing Corporation, Stearman Aircraft Corporation, and Standard Metal Propeller Company. United Aircraft then purchased National Air Transport in 1930.

On July 27, 1928, the 12-passenger Boeing 80 biplane made its first flight. With three engines, it was Boeing’s first plane built with the sole intention of being a passenger transport. An upgraded version, the 80A, carrying eighteen passengers, made its first flight in September 1929.[13]

1930s and 1940s

In the early 1930s Boeing became a leader in all-metal aircraft construction, and in the design revolution that established the path for transport aircraft through the 1930s. In 1930, Boeing built the Monomail, a low-wing all-metal monoplane that carried mail. The low drag airframe with cantilever wings and retractable landing gear was so revolutionary that the engines and propellers of the time were not adequate to realize the potential of the plane. By the time controllable pitch propellers were developed, Boeing was building its Model 247 airliner. Two Monomails were built. The second one, the Model 221, had a 6-passenger cabin.[14][15] In 1931, the Monomail design became the foundation of the Boeing YB-9, the first all-metal, cantilever-wing, monoplane bomber. Five examples entered service between September 1932 and March 1933. The performance of the twin-engine monoplane bomber led to reconsideration of air defense requirements, although it was soon rendered obsolete by rapidly-advancing bomber designs.

In 1932, Boeing introduced the Model 248, the first all-metal monoplane fighter. The P-26 Peashooter was in front-line service with the US Army Air Corps from 1934 to 1938.

In 1933, the Boeing 247 was introduced, which set the standard for all competitors in the passenger transport market. The 247 was an all-metal low-wing monoplane that was much faster, safer, and easier to fly than other passenger aircraft. For example, it was the first twin engine passenger aircraft that could fly on one engine. In an era of unreliable engines, this vastly improved flight safety. Boeing built the first 59 aircraft exclusively for its own United Airlines subsidiary’s operations. This badly hurt competing airlines, and was typical of the anti-competitive corporate behavior that the U.S. government sought to prohibit at the time. The direction established with the 247 was further developed by Douglas Aircraft, resulting in one of the most successful designs in aviation history.

The Air Mail Act of 1934 prohibited airlines and manufacturers from being under the same corporate umbrella, so the company split into three smaller companies – Boeing Airplane Company, United Airlines, and United Aircraft Corporation, the precursor to United Technologies. Boeing retained the Stearman facilities in Wichita, Kansas. Following the breakup of United Aircraft, William Boeing sold off his shares and left Boeing. Clairmont “Claire” L. Egtvedt, who had become Boeing’s president in 1933, became the chairman as well. He believed the company’s future was in building bigger planes.[16][17] Work began in 1936 on Boeing Plant 2 to accommodate the production of larger modern aircraft.

From 1934 to 1937, Boeing was developing an experimental long range bomber, the XB-15. At its introduction in 1937 it was the largest heavier-than-air craft built to date. Trials revealed that its speed was unsatisfactory, but the design experience was used in the development of the Model 314 that followed a year later.

Overlapping with the period of the YB-15 development, an agreement with Pan American World Airways (Pan Am) was reached, to develop and build a commercial flying boat able to carry passengers on transoceanic routes. The first flight of the Boeing 314 Clipper was in June 1938. It was the largest civil aircraft of its time, with a capacity of 90 passengers on day flights, and of 40 passengers on night flights. One year later, the first regular passenger service from the U.S. to the UK was inaugurated. Subsequently, other routes were opened, so that soon Pan Am flew with the Boeing 314 to destinations all over the world.

In 1938, Boeing completed work on its Model 307 Stratoliner. This was the world’s first pressurized-cabin transport aircraft, and it was capable of cruising at an altitude of 20,000 feet (6,100 m) – above most weather disturbances. It was based on the B-17, using the same wings, tail and engines.

Boeing B-29 assembly line in Wichita, Kansas, 1944

During World War II, Boeing built a large number of B-17 and B-29 bombers. Boeing ranked twelfth among United States corporations in the value of wartime production contracts.[18] Many of the workers were women whose husbands had gone to war. In the beginning of March 1944, production had been scaled up in such a manner that over 350 planes were built each month. To prevent an attack from the air, the manufacturing plants had been covered with greenery and farmland items. During the war years the leading aircraft companies of the U.S. cooperated. The Boeing-designed B-17 bomber was assembled also by Vega (a subsidiary of Lockheed Aircraft Corp.) and Douglas Aircraft Co., while the B-29 was assembled also by Bell Aircraft Co. and by Glenn L. Martin Company.[19] In 1942 Boeing started development of the C-97 Stratofreighter, the first of a generation of heavy-lift military transports; it became operational in 1947. The C-97 design would be successfully adapted for use as an aerial refueling tanker, although its role as a transport was soon limited by designs that had advantages in either versatility or capacity.

Boeing 377 Stratocruiser of BOAC

After the war, most orders of bombers were canceled and 70,000 people lost their jobs at Boeing.[citation needed] The company aimed to recover quickly by selling its Stratocruiser (the Model 377), a luxurious four-engine commercial airliner derived from the C-97. However, sales of this model were not as expected and Boeing had to seek other opportunities to overcome the situation.[citation needed] In 1947 Boeing flew its first jet aircraft, the XB-47, from which the highly successful B-47 and B-52 bombers were derived.

1950s

Boeing 707 painted with BOAC on it

The Boeing 707 in British Overseas Airways Corporation (BOAC) livery, 1964

B-52 bomber

Boeing developed military jets such as the B-47 Stratojet[20] and B-52 Stratofortress bombers in the late-1940s and into the 1950s. During the early 1950s, Boeing used company funds to develop the 367–80 jet airliner demonstrator that led to the KC-135 Stratotanker and Boeing 707 jetliner. Some of these were built at Boeing’s facilities in Wichita, Kansas, which existed from 1931 to 2014.

Between the last delivery of a 377 in 1950 and the first order for the 707 in 1955, Boeing was shut out of the commercial aircraft market.

In the mid-1950s technology had advanced significantly, which gave Boeing the opportunity to develop and manufacture new products. One of the first was the guided short-range missile used to intercept enemy aircraft. By that time the Cold War had become a fact of life, and Boeing used its short-range missile technology to develop and build an intercontinental missile.

In 1958, Boeing began delivery of its 707, the United States’ first commercial jet airliner, in response to the British De Havilland Comet, French Sud Aviation Caravelle and Soviet Tupolev Tu-104, which were the world’s first generation of commercial jet aircraft. With the 707, a four-engine, 156-passenger airliner, the U.S. became a leader in commercial jet manufacturing. A few years later, Boeing added a second version of this aircraft, the Boeing 720, which was slightly faster and had a shorter range.

Boeing was a major producer of small turbine engines during the 1950s and 1960s. The engines represented one of the company’s major efforts to expand its product base beyond military aircraft after World War II. Development on the gas turbine engine started in 1943 and Boeing’s gas turbines were designated models 502 (T50), 520 (T60), 540, 551 and 553. Boeing built 2,461 engines before production ceased in April 1968. Many applications of the Boeing gas turbine engines were considered to be firsts, including the first turbine-powered helicopter and boat.[21]

1960s

Boeing 747 on the runway and 707 in the air

The 707 and 747 formed the backbone of many major airline fleets through the end of the 1970s, including United (747 shown) and Pan Am (707 shown)

Lufthansa-branded Boeing 727

LufthansaBoeing 727

Lufthansa-branded Boeing 737

A Boeing 737, the best-selling commercial jet aircraft in aviation history

Vertol Aircraft Corporation was acquired by Boeing in 1960,[22] and was reorganized as Boeing’s Vertol division. The twin-rotor CH-47 Chinook, produced by Vertol, took its first flight in 1961. This heavy-lift helicopter remains a work-horse vehicle to the present day. In 1964, Vertol also began production of the CH-46 Sea Knight.

In December 1960, Boeing announced the model 727 jetliner, which went into commercial service about three years later. Different passenger, freight and convertible freighter variants were developed for the 727. The 727 was the first commercial jetliner to reach 1,000 sales.[23]

On May 21, 1961, the company shortened its name to the current “Boeing Company”.[24][not specific enough to verify]

Boeing won a contract in 1961 to manufacture the S-IC stage of the Saturn V rocket, manufactured at the Michoud Assembly Facility in New Orleans, Louisiana.

In 1966, Boeing president William M. Allen asked Malcolm T. Stamper to spearhead production of the new 747 airliner on which the company’s future was riding. This was a monumental engineering and management challenge, and included construction of the world’s biggest factory in which to build the 747 at Everett, Washington, a plant which is the size of 40 football fields.[25]

In 1967, Boeing introduced another short- and medium-range airliner, the twin-engine 737. It has since become the best-selling commercial jet aircraft in aviation history.[26] Several versions have been developed, mainly to increase seating capacity and range. The 737 remains in production as of February 2018 with the latest 737 MAX series.

The roll-out ceremonies for the first 747-100 took place in 1968, at the massive new factory in Everett, about an hour’s drive from Boeing’s Seattle home. The aircraft made its first flight a year later. The first commercial flight occurred in 1970. The 747 has an intercontinental range and a larger seating capacity than Boeing’s previous aircraft.

Boeing also developed hydrofoils in the 1960s. The screw-driven USS High Point (PCH-1) was an experimental submarine hunter. The patrol hydrofoil USS Tucumcari (PGH-2) was more successful. Only one was built, but it saw service in Vietnam and Europe before running aground in 1972. Its waterjet and fully submersed flying foils were the example for the later Pegasus-class patrol hydrofoils and the Model 929 Jetfoil ferries in the 1980s. The Tucumcari and later boats were produced in Renton. While the Navy hydrofoils were withdrawn from service in the late 1980s, the Boeing Jetfoils are still in service in Asia.

1970s

In the early 1970s Boeing suffered from the simultaneous decline in Vietnam War military spending, the slowing of the space program as Project Apollo neared completion, the recession of 1969–70,[27]:291 and the company’s $2 billion debt as it built the new 747 airliner.[27]:303 Boeing did not receive any orders for more than a year. Its bet for the future, the 747, was delayed in production by three months because of problems with its Pratt & Whitney engines. Then in March 1971, Congress voted to discontinue funding for the development of the Boeing 2707 supersonic transport (SST), the US’s answer to the British-French Concorde, forcing the end of the project.[28][29][30][31][32][33]

Commercial Airplane Group, by far the largest unit of Boeing, went from 83,700 employees in 1968 to 20,750 in 1971. Each unemployed Boeing employee cost at least one other job in the Seattle area, and unemployment rose to 14%, the highest in the United States.[citation needed] Housing vacancy rates rose to 16% from 1% in 1967.[citation needed] U-Haul dealerships ran out of trailers because so many people moved out. A billboard appeared near the airport:[27]:303–304

Will the last person
leaving SEATTLE –
Turn out the lights.[27]:303

In January 1970, the first 747, a four-engine long-range airliner, flew its first commercial flight with Pan American World Airways. The 747 changed the airline industry, providing much larger seating capacity than any other airliner in production. The company has delivered over 1,500 Boeing 747s. The 747 has undergone continuous improvements to keep it technologically up-to-date. Larger versions have also been developed by stretching the upper deck. The newest version of the 747, the 747-8, remains in production as of 2018.[citation needed]

Boeing launched three Jetfoil 929-100 hydrofoils that were acquired in 1975 for service in the Hawaiian Islands. When the service ended in 1979 the three hydrofoils were acquired by Far East Hydrofoil for service between Hong Kong and Macau.[34]

During the 1970s, Boeing also developed the US Standard Light Rail Vehicle, which has been used in San Francisco, Boston, and Morgantown, West Virginia.[35]

1980s

Boeing 757 aircraft branded with Turkmenistan Airlines

The narrow body Boeing 757 replaced the 727. This example is in Turkmenistan Airlines livery.

Boeing 767 branded with Qantas

The Boeing 767 replaced the Boeing 707. This example is in Qantas livery.

In 1983, the economic situation began to improve. Boeing assembled its 1,000th 737 passenger aircraft. During the following years, commercial aircraft and their military versions became the basic equipment of airlines and air forces. As passenger air traffic increased, competition was harder, mainly from Airbus, a European newcomer in commercial airliner manufacturing. Boeing had to offer new aircraft, and developed the single-aisle 757, the larger, twin-aisle 767, and upgraded versions of the 737. An important project of these years was the Space Shuttle, to which Boeing contributed with its experience in space rockets acquired during the Apollo era. Boeing participated also with other products in the space program, and was the first contractor for the International Space Station program.

During the decade several military projects went into production, including Boeing support of the B-2 stealth bomber. As part of an industry team led by Northrop, Boeing built the B-2’s outer wing portion, aft center fuselage section, landing gear, fuel system, and weapons delivery system. At its peak in 1991, the B-2 was the largest military program at Boeing, employing about 10,000 people. The same year, the US’s National Aeronautic Association awarded the B-2 design team the Collier Trophy for the greatest achievement in aerospace in America. The first B-2 rolled out of the bomber’s final assembly facility in Palmdale, California, in November 1988 and it flew for the first time on July 17, 1989.[36]

The Avenger air defense system and a new generation of short-range missiles also went into production. During these years, Boeing was very active in upgrading existing military equipment and developing new ones. Boeing also contributed to wind power development with the experimental MOD-2 Wind Turbines for NASA and the United States Department of Energy, and the MOD-5B for Hawaii.[37]

1990s

Boeing 777-300ER aircraft branded with Air France

Air France 777-300ER

Boeing was one of seven competing companies that bid for the Advanced Tactical Fighter. Boeing agreed to team with General Dynamics and Lockheed, so that all three companies would participate in the development if one of the three companies designs was selected. The Lockheed design was eventually selected and developed into the F-22 Raptor.[38]

In April 1994, Boeing introduced the most modern commercial jet aircraft at the time, the twin-engine 777, with a seating capacity of approximately 300 to 370 passengers in a typical three-class layout, in between the 767 and the 747. The longest range twin-engined aircraft in the world, the 777 was the first Boeing airliner to feature a “fly-by-wire” system and was conceived partly in response to the inroads being made by the European Airbus into Boeing’s traditional market. This aircraft reached an important milestone by being the first airliner to be designed entirely by using computer-aided design (CAD) techniques.[39] The 777 was also the first airplane to be certified for 180 minute ETOPS at entry into service by the FAA.[40] Also in the mid-1990s, the company developed the revamped version of the 737, known as the 737 “Next-Generation”, or 737NG. It has since become the fastest-selling version of the 737 in history, and on April 20, 2006 sales passed those of the “Classic 737”, with a follow-up order for 79 aircraft from Southwest Airlines.

In 1995, Boeing chose to demolish the headquarters complex on East Marginal Way South instead of upgrading it to match new seismic standards. The headquarters were moved to an adjacent building and the facility was demolished in 1996.[41] In 1997, Boeing was headquartered on East Marginal Way South, by King County Airport, in Seattle.[42]

In 1996, Boeing acquired Rockwell‘s aerospace and defense units. The Rockwell business units became a subsidiary of Boeing, named Boeing North American, Inc. In August 1997, Boeing merged with McDonnell Douglas in a US$13 billion stock swap, with Boeing as the surviving company.[24][not specific enough to verify] Following the merger, the McDonnell Douglas MD-95 was renamed the Boeing 717, and the production of the MD-11 trijet was limited to the freighter version. Boeing introduced a new corporate identity with completion of the merger, incorporating the Boeing logo type and a stylized version of the McDonnell Douglas symbol, which was derived from the Douglas Aircraft logo from the 1970s.

An aerospace analyst criticized the CEO and his deputy, Philip M. Condit and Harry Stonecipher, for thinking of their personal benefit first, and causing the problems to Boeing many years later. Instead of investing the huge cash reserve to build new airplanes, they initiated a program to buy back Boeing stock for more than US$10 billion.[43][importance?]

In May 1999, Boeing studied buying Embraer to encourage commonality between the E-Jets and the Boeing 717, but this was nixed by then president Harry Stonecipher. He preferred buying Bombardier Aerospace, but its owner, the Beaudoin family, asked for a price too high for Boeing which remembered its mid-1980s purchase of de Havilland Canada, losing a million dollars every day for three years before selling it to Bombardier in 1992.[44]

2000–2009

International Space Station (STS-134)

International Space Station

Boeing's factory in Everett, Washington in 2011. The planes are on tarmac outside warehouse-like buildings

Boeing Everett Factory in 2011

In January 2000, Boeing chose to expand its presence in another aerospace field of satellite communications by purchasing Hughes Electronics.[45]

In September 2001, Boeing moved its corporate headquarters from Seattle to Chicago. Chicago, Dallas and Denver – vying to become the new home of the world’s largest aerospace concern – all had offered packages of multimillion-dollar tax breaks.[46] Its offices are located in the Fulton River District just outside the Chicago Loop.[47]

On October 10, 2001, Boeing lost to its rival Lockheed Martin in the fierce competition for the multibillion-dollar Joint Strike Fighter contract. Boeing’s entry, the X-32, was rejected in favor of Lockheed’s X-35 entrant. Boeing continues to serve as the prime contractor on the International Space Station and has built several of the major components.

Boeing began development of the KC-767 aerial refueling tanker in the early 2000s. Italy and Japan ordered four KC-767s each. After development delays and FAA certification, Boeing delivered the tankers to Japan from 2008[48][49] with the second KC-767 following on March 5.[50] to 2010.[51] Italy received its four KC-767 during 2011.[52][53][54]

In 2004, Boeing ended production of the 757 after 1,050 aircraft were produced. More advanced, stretched versions of the 737 were beginning to compete against the 757, and the planned 787-3 was to fill much of the top end of the 757 market. Also that year, Boeing announced that the 717, the last civil aircraft to be designed by McDonnell Douglas, would cease production in 2006. The 767 was in danger of cancellation as well, with the 787 replacing it, but orders for the freighter version extended the program.

After several decades of success, Boeing lost ground to Airbus and subsequently lost its lead in the airliner market in 2003. Multiple Boeing projects were pursued and then canceled, notably the Sonic Cruiser, a proposed jetliner that would travel just under the speed of sound, cutting intercontinental travel times by as much as 20%. It was launched in 2001 along with a new advertising campaign to promote the company’s new motto, “Forever New Frontiers”, and to rehabilitate its image. However, the plane’s fate was sealed by the changes in the commercial aviation market following the September 11 attacks and the subsequent weak economy and increase in fuel prices.

Subsequently, Boeing streamlined its production and turned its attention to a new model, the Boeing 787 Dreamliner, using much of the technology developed for the Sonic Cruiser, but in a more conventional aircraft designed for maximum efficiency. The company also launched new variants of its successful 737 and 777 models. The 787 proved to be a highly popular choice with airlines, and won a record number of pre-launch orders. With delays to Airbus’ A380 program several airlines threatened to switch their A380 orders to Boeing’s new 747 version, the 747-8.[55] Airbus’s response to the 787, the A350, received a lukewarm response at first when it was announced as an improved version of the A330, and then gained significant orders when Airbus promised an entirely new design. The 787 program encountered delays, with the first flight not occurring until late 2009.[56]

After regulatory approval, Boeing formed a joint venture, United Launch Alliance with its competitor, Lockheed Martin, on December 1, 2006. The new venture is the largest provider of rocket launch services to the U.S. government.[57]

In 2005, Gary Scott, ex-Boeing executive and then head of Bombardier’s CSeries program, suggested a collaboration on the upcoming CSeries, but an internal study assessed Embraer as the best partner for regional jets. The Brazilian government wanted to retain control and blocked an acquisition.[44]

On August 2, 2005, Boeing sold its Rocketdyne rocket engine division to Pratt & Whitney. On May 1, 2006, Boeing agreed to purchase Dallas, Texas-based Aviall, Inc. for $1.7 billion and retain $350 million in debt. Aviall, Inc. and its subsidiaries, Aviall Services, Inc. and ILS formed a wholly owned subsidiary of Boeing Commercial Aviation Services (BCAS).[58]

Realizing that increasing numbers of passengers have become reliant on their computers to stay in touch, Boeing introduced Connexion by Boeing, a satellite based Internet connectivity service that promised air travelers unprecedented access to the World Wide Web. The company debuted the product to journalists in 2005, receiving generally favorable reviews. However, facing competition from cheaper options, such as cellular networks, it proved too difficult to sell to most airlines. In August 2006, after a short and unsuccessful search for a buyer for the business, Boeing chose to discontinue the service.[59][60]

On August 18, 2007, NASA selected Boeing as the manufacturing contractor for the liquid-fueled upper stage of the Ares I rocket.[61] The stage, based on both ApolloSaturn and Space Shuttle technologies, was to be constructed at NASA’s Michoud Assembly Facility near New Orleans; Boeing constructed the S-IC stage of the Saturn V rocket at this site in the 1960s.

The Boeing 787 Dreamliner on its first flight

Boeing launched the 777 Freighter in May 2005 with an order from Air France. The freighter variant is based on the −200LR. Other customers include FedEx and Emirates. Boeing officially announced in November 2005 that it would produce a larger variant of the 747, the 747-8, in two versions, commencing with the Freighter version with firm orders for two cargo carriers. The second version, named the Intercontinental, is for passenger airlines. Both 747-8 versions feature a lengthened fuselage, new, advanced engines and wings, and the incorporation of other technologies developed for the 787.

Boeing also received the launch contract from the U.S. Navy for the P-8 Poseidon Multimission Maritime Aircraft, an anti-submarine warfare patrol aircraft. It has also received orders for the 737 AEW&C “Wedgetail” aircraft. The company has also introduced new extended range versions of the 737. These include the 737-700ER and 737-900ER. The 737-900ER is the latest and will extend the range of the 737–900 to a similar range as the successful 737–800 with the capability to fly more passengers, due to the addition of two extra emergency exits.

777-200LR Worldliner at the Paris Air Show 2005

The record-breaking 777-200LR Worldliner, presented at the Paris Air Show 2005.

The 777-200LR Worldliner embarked on a well-received global demonstration tour in the second half of 2005, showing off its capacity to fly farther than any other commercial aircraft. On November 10, 2005, the 777-200LR set a world record for the longest non-stop flight. The plane, which departed from Hong Kong traveling to London, took a longer route, which included flying over the U.S. It flew 11,664 nautical miles (21,601 km) during its 22-hour 42-minute flight. It was flown by Pakistan International Airlines pilots and PIA was the first airline to fly the 777-200LR Worldliner.

On August 11, 2006, Boeing agreed to form a joint-venture with the large Russian titanium producer, VSMPO-Avisma for the machining of titanium forgings. The forgings will be used on the 787 program.[62] In December 2007, Boeing and VSMPO-Avisma created a joint venture, Ural Boeing Manufacturing, and signed a contract on titanium product deliveries until 2015, with Boeing planning to invest $27 billion in Russia over the next 30 years.[63]

In February 2011, Boeing received a contract for 179 KC-46 U.S. Air Force tankers at a value of $35 billion.[64] The KC-46 tankers are based on the KC-767.

Drawing of XM1202 tank

Graphic representation of the XM1202 Mounted Combat System vehicle

Boeing, along with Science Applications International Corporation (SAIC), were the prime contractors in the U.S. military’s Future Combat Systems program.[65] The FCS program was canceled in June 2009 with all remaining systems swept into the BCT Modernization program.[66] Boeing works jointly with SAIC in the BCT Modernization program like the FCS program but the U.S. Army will play a greater role in creating baseline vehicles and will only contract others for accessories.

Defense Secretary Robert M. Gates‘ shift in defense spending to, “make tough choices about specific systems and defense priorities based solely on the national interest and then stick to those decisions over time”[67] hit Boeing especially hard, because of their heavy involvement with canceled Air Force projects.[68]

Unethical conduct

In May 2003, the U.S. Air Force announced it would lease 100 KC-767 tankers to replace the oldest 136 KC-135s. In November 2003, responding to critics who argued that the lease was more expensive than an outright purchase, the DoD announced a revised lease of 20 aircraft and purchase of 80. In December 2003, the Pentagon announced the project was to be frozen while an investigation of allegations of corruption by one of its former procurement staffers, Darleen Druyun (who began employment at Boeing in January) was begun. The fallout of this resulted in the resignation of Boeing CEO Philip M. Condit and the termination of CFO Michael M. Sears.[69] Harry Stonecipher, former McDonnell Douglas CEO and Boeing COO, replaced Condit on an interim basis. Druyun pleaded guilty to inflating the price of the contract to favor her future employer and to passing information on the competing Airbus A330 MRTT bid. In October 2004, she received a sentence of nine months in federal prison, seven months in a community facility, and three years probation.[70]

In March 2005, the Boeing board forced President and CEO Harry Stonecipher to resign. Boeing said an internal investigation revealed a “consensual” relationship between Stonecipher and a female executive that was “inconsistent with Boeing’s Code of Conduct” and “would impair his ability to lead the company”.[71] James A. Bell served as interim CEO (in addition to his normal duties as Boeing’s CFO) until the appointment of Jim McNerney as the new Chairman, President, and CEO on June 30, 2005.

Industrial espionage

In June 2003, Lockheed Martin sued Boeing, alleging that the company had resorted to industrial espionage in 1998 to win the Evolved Expendable Launch Vehicle (EELV) competition. Lockheed Martin claimed that the former employee Kenneth Branch, who went to work for McDonnell Douglas and Boeing, passed nearly 30,000 pages of proprietary documents to his new employers. Lockheed Martin argued that these documents allowed Boeing to win 19 of the 28 tendered military satellite launches.[72][73]

In July 2003, Boeing was penalized, with the Pentagon stripping seven launches away from the company and awarding them to Lockheed Martin.[72] Furthermore, the company was forbidden to bid for rocket contracts for a twenty-month period, which expired in March 2005.[73] In early September 2005, it was reported that Boeing was negotiating a settlement with the U.S. Department of Justice in which it would pay up to $500 million to cover this and the Darleen Druyun scandal.[74]

1992 EC-US Agreement notes

Until the late 1970s, the U.S. had a near monopoly in the Large Civil Aircraft (LCA) sector.[75] The Airbus consortium (created in 1969) started competing effectively in the 1980s. At that stage the U.S. became concerned about European competition and the alleged subsidies paid by the European governments for the developments of the early models of the Airbus family. This became a major issue of contention, as the European side was equally concerned by subsidies accruing to U.S. LCA manufacturers through NASA and Defense programs.

Europe and the U.S. started bilateral negotiations for the limitation of government subsidies to the LCA sector in the late 1980s. Negotiations were concluded in 1992 with the signing of the EC-US Agreement on Trade in Large Civil Aircraft which imposes disciplines on government support on both sides of the Atlantic which are significantly stricter than the relevant World Trade Organization (WTO) rules: Notably, the Agreement regulates in detail the forms and limits of government support, prescribes transparency obligations and commits the parties to avoiding trade disputes.[76]

Subsidy disputes

In 2004, the EU and the U.S. agreed to discuss a possible revision of the 1992 EC-US Agreement provided that this would cover all forms of subsidies including those used in the U.S., and in particular the subsidies for the Boeing 787; the first new aircraft to be launched by Boeing for 14 years. In October 2004 the U.S. began legal proceedings at the WTO by requesting WTO consultations on European launch investment to Airbus. The U.S. also unilaterally withdrew from the 1992 EU-US Agreement.[77] The U.S. claimed Airbus had violated a 1992 bilateral accord when it received what Boeing deemed “unfair” subsidies from several European governments. Airbus responded by filing a separate complaint, contesting that Boeing had also violated the accord when it received tax breaks from the U.S. Government. Moreover, the EU also complained that the investment subsidies from Japanese airlines violated the accord.

On January 11, 2005, Boeing and Airbus agreed that they would attempt to find a solution to the dispute outside of the WTO. However, in June 2005, Boeing and the United States government reopened the trade dispute with the WTO, claiming that Airbus had received illegal subsidies from European governments. Airbus has also responded to this claim against Boeing, reopening the dispute and also accusing Boeing of receiving subsidies from the U.S. Government.[78]

On September 15, 2010, the WTO ruled that Boeing had received billions of dollars in government subsidies.[79] Boeing responded by stating that the ruling was a fraction of the size of the ruling against Airbus and that it required few changes in its operations.[80] Boeing has received $8.7 billion in support from Washington state.[81]

Future concepts

In May 2006, four concept designs being examined by Boeing were outlined in The Seattle Times based on corporate internal documents. The research aims in two directions: low-cost airplanes, and environmental-friendly planes. Codenamed after some of The Muppets characters, a design team known as the Green Team concentrated primarily on reducing fuel usage. All four designs illustrated rear-engine layouts.[82]

  • “Fozzie” employs open rotors and offers a lower cruising speed.[82]
  • “Beaker” has very thin, long wings, with the ability to partially fold-up to facilitate easier taxiing.
  • “Kermit Kruiser” has forward swept wings over which are positioned its engines, with the aim of lowering noise below due to the reflection of the exhaust signature upward.[82]
  • “Honeydew” with its delta wing design, resembles a marriage of the flying wing concept and the traditional tube fuselage.[82]

As with most concepts, these designs are only in the exploratory stage, intended to help Boeing evaluate the potentials of such radical technologies.[82]

In 2015, Boeing patented its own force field technology, also known as the shock wave attenuation system, that would protect vehicles from shock waves generated by nearby explosions.[83] Boeing has yet to confirm when they plan to build and test the technology.[84]

The Boeing Yellowstone Project is the company’s project to replace its entire civil aircraft portfolio with advanced technology aircraft. New technologies to be introduced include composite aerostructures, more electrical systems (reduction of hydraulic systems), and more fuel-efficient turbofan engines, such as the Pratt & Whitney PW1000G Geared Turbofan, General Electric GEnx, the CFM International LEAP56, and the Rolls-Royce Trent 1000. The term “Yellowstone” refers to the technologies, while “Y1” through “Y3” refer to the actual aircraft.

2010–2016

In summer 2010, Boeing acquired Fairfax, VA-based C4ISR and combat systems developer Argon ST to expand its C4ISR, cyber and intelligence capabilities.[85]

Naturalized citizen Dongfan Chung, an engineer working with Boeing, was the first person convicted[when?] under the Economic Espionage Act of 1996. Chung is suspected of having passed on classified information on designs including the Delta IV rocket, F-15 Eagle, B-52 Stratofortress and the CH-46 and CH-47 helicopters.[86]

In 2011, Boeing was hesitating between re-engineing the 737 or developing an all-new small airplane for which Embraer could have been involved, but when the A320neo was launched with new engines, that precipitated the 737 MAX decision.[44] On November 17, Boeing received its largest provisional order for $21.7 billion at list prices from Indonesian LCC Lion Air for 201 737 MAX, 29 737-900ERs and 150 purchase rights, days after its previous order record of $18 billion for 50 777-300ER from Emirates.[87]

In 2012, Boeing announced it would close its facility in Wichita, Kansas (pictured).

On January 5, 2012, Boeing announced it would close its facilities in Wichita, Kansas with 2,160 workers before 2014, more than 80 years after it was established, where it had employed as many as 40,000 people.[88][89]

In May 2013, Boeing announced it would cut 1,500 IT jobs in Seattle over the next three years through layoffs, attrition and mostly relocation to St. Louis and North Charleston, South Carolina − 600 jobs each.[90][91] In September, Boeing announced their Long Beach facility manufacturing the C-17 Globemaster III military transport would shut down.[92]

In January 2014, the company announced US$1.23 billion profits for Q4 2013, a 26% increase, due to higher demand for commercial aircraft.[93] The last plane to undergo maintenance in Boeing Wichita’s facility left in May 2014.[94]

In September 2014, NASA awarded contracts to Boeing and SpaceX for transporting astronauts to the International Space Station.[95]

In June 2015, Boeing announced that James McNerney would step down as CEO to be replaced by Boeing’s COO, Dennis Muilenburg, on July 1, 2015.[96] The 279th and last C-17 was delivered in summer before closing the site, affecting 2,200 jobs.[92]

In February 2016, Boeing announced that Boeing President and CEO Dennis Muilenburg was elected the 10th Chairman of the Board, succeeding James McNerney.[97] In March, Boeing announced plans to cut 4,000 jobs from its commercial airplane division by mid-year.[98] On May 13, 2016, Boeing opened a $1 billion, 27-acre (11-hectare) factory in Washington state that will make carbon-composite wings for the Boeing 777X to be delivered from 2020.[99]

CSeries dumping petition

Main article: CSeries dumping petition by Boeing

The CSeries CS100 demonstrated for Delta Air Lines in Atlanta

On 28 April 2016, Bombardier Aerospace recorded a firm order from Delta Air Lines for 75 CSeries CS100s plus 50 options. On 27 April 2017, Boeing filed a petition for dumping them at $19.6m each, below their $33.2m production cost.

On 9 June 2017, the US International Trade Commission (USITC) found that the US industry could be threatened. On 26 September, the US Department of Commerce (DoC) observed subsidies of 220% and intended to collect deposits accordingly, plus a preliminary 80% anti-dumping duty, resulting in a duty of 300%. The DoC announced its final ruling, a total duty of 292%, on 20 December. On 10 January 2018, the Canadian government filed a complaint at the World Trade Organization against the US.

On 26 January 2018, the four USITC commissioners unanimously determined that US industry is not threatened and no duty orders will be issued, overturning the imposed duties. The Commission public report was made available by February 2018. On March 22, Boeing declined to appeal the ruling.

2017–present

In October 2017, Boeing announced plans to acquire Aurora Flight Sciences to expand its capabilities to develop autonomous, electric-powered and long-flight-duration aircraft for its commercial and military businesses, pending regulatory approval.[100][101]

In 2017, Boeing won 912 net orders for $134.8 billion at list prices including 745 737s, 94 787s and 60 777s, and delivered 763 airliners including 529 737s, 136 787s and 74 777s.[102]

In January 2018, a joint venture was formed by auto seat maker Adient (50.01%) and Boeing (49.99%) to develop and manufacture airliner seats for new installations or retrofit, a $4.5 billion market in 2017 which will grow to $6 billion by 2026, to be based in Kaiserslautern near Frankfurt and distributed by Boeing subsidiary Aviall, with its customer service center in Seattle.[103]

Boeing CEO Dennis Muilenburg and President Trump at the 787-10 Dreamliner rollout ceremony

On June 4, 2018, Boeing and Safran announced a 50-50 partnership to design, build and service auxiliary power units (APU) after regulatory and antitrust clearance in the second half of 2018.[104] This could threaten the dominance of Honeywell and United Technologies in the APU market.[105]

At a June 2018 AIAA conference, Boeing unveiled a hypersonic transport project.[106]

On July 5, 2018, Boeing and Embraer announced a joint venture, covering Embraer’s airliner business.[107] This is seen as a reaction to Airbus acquiring a majority of the competing Bombardier CSeries on October 16, 2017.[108]

In September 2018, Boeing signed a deal with the Pentagon worth up to $2.4 billion to provide helicopters for protecting nuclear-missile bases.[109] Boeing acquired the satellite company Millennium Space System in September 2018.[110]

On March 10, 2019, an Ethiopian Airlines Boeing 737 MAX 8 crashed just minutes after take-off from Addis Ababa. Initial reports noted similarities with the crash of a Lion Air MAX 8 in October 2018. In the following days, numerous countries and airlines grounded all 737 MAX aircraft.[111] On March 13, the FAA became the last major authority to ground the aircraft, reversing its previous stance that the MAX was safe to fly.[112] On March 19, the U.S. Department of Transportation requested an audit of the regulatory process that led to the aircraft’s certification in 2017,[113][114] amid concerns that current U.S. rules allow manufacturers to largely “self-certify” aircraft.[115] During March 2019 Boeing’s shares “dropped significantly”.[citation needed] In May 2019 Boeing admitted that it had known of issues with the 737 Max before the second crash, and only informed the Federal Aviation Authority of the software issue a month after the Lion Air crash.[116]

On April 23, 2019, the Wall Street Journal reported that Boeing, SSL and aerospace company The Carlyle Group had been helping the Chinese Peoples Liberation Army enable its Mass surveillance on ethnic groups such as the Uighur Muslims in the Xinjiang autonomous region in northwestern China as well as giving a high-speed internet access to the artificial islands in the South China sea among others through the use of new satellites. The companies have been selling the new satellites to a Chinese company called AsiaSat which is a joint-venture between the Carlyle Group and the Chinese State-owned CITIC which then sells space on these satellites to Chinese companies. The companies stated that they never specifically intended for their technology to be used by China’s Ministry of Public Security and the Police.[117]

On July 18, 2019, when presenting its second-quarter results, Boeing announced that it had recorded a $4.9 billion after-tax charge corresponding to its initial estimate of the cost of compensation to airlines for the 737 MAX groundings, but not the cost of lawsuits, potential fines, or the less tangible cost to its reputation. It also noted a $1.7 billion rise in estimated MAX production costs, primarily due to higher costs associated with the reduced production rate.[118][119] Source Wikopedia

Clifton Suspension Bridge, Avon Gorge near Bristol Posted October 13th 2019

The early days

People have lived on the high land either side of the Avon Gorge for millennia, and the city itself takes its name from the early bridge that cross the River Avon near where the river bet the River Frome.

The city soon outgrew the main medieval Bristol Bridge, and there were plans a plenty in the 1600 and 1700s to build another further downstream.

But the Royal Navy insisted that any bridge built had a very high clearance, at least 100ft, so that the tallest ships could safely get under it.

That pretty much precluded building a bridge that would be practical and useful on the low ground around Hotwells and Ashton, and in any case, that was still a rural area then.

In 1753, Bristolian merchant William Vick died and left a bequest of £1,000 (equivalent to £140,000 in today’s money) with the instruction that it gather interest and when it was £10,000, it be spent building a bridge from Leigh Woods to Clifton Down.

Trouble was, no one quite knew how to do that anyway, and the cost would be more than £10,000.

Bristol mum of six Sarah Guppy, who was also an inventor, engineer, architect and polymath, came up with a patent to construct the piling that could mean a bridge over the River Avon at this point would be possible, and she later gave her designs to Brunel.

The competition

With Vick’s money as a starter, the Merchants of Bristol decided to hold a competition to budding engineers to design a bridge in 1829. The prize was 100 guineas.

A total of 22 designers submitted entries – a young Isambard Kingdom Brunel submitted four different ones. Seventeen of the 22, including stone bridges, were dismissed by a committee, and the judge, Thomas Telford, rejected the five in the shortlist before coming up with a plan himself.

That was rejected, and a second competition was won by Brunel.

Read More

The first attempt – failed

A ceremony to start work was held on June 20, 1831. They started building the towers first, but didn’t get very far. At the end of October, Bristol erupted in a four-day long riot where the people of the city demanded better democracy and representation, following the collapse of a Reform Bill.

Brunel himself was recruited as a special constable to join a force trying to quell the riots.

The riots knocked the confidence of investors in the bridge and work stopped.

The second attempt – failed

Work began again five years later in 1836, but the money still wasn’t there and the main contractors went bankrupt the following year, although they had constructed the two main towers in unfinished stone.

And the Avon Gorge was crossed – by a 300m long iron bar, which was an inch and a quarter in diameter.

The third attempt – failed

People still tried to build the bridge, and in the early 1840s, 600 tons of bar iron was bought to turn into chains to hold up the bridge, but the money ran out again in 1843 and work stopped for a third time.

In 1851 all hope looked lost – the chains that had already been made were sold to be used on the Brunel-designed Royal Albert Bridge across the Tamar from Saltash to Plymouth.

Read More

Crossing the Gorge

In the 1850s, the towers and the single solitary iron bar across the gorge between them were a familiar part of the Bristol landscape, albeit something of a white elephant.

People paid to cross the gorge in a basket suspended beneath the iron bar. It looked the the bridge would never be completed.

The fourth attempt

Brunel died in 1859 and his fellow engineers decided that completing his one unfinished project would be the best memorial and began to raised funds.

By a stroke of luck, the following year, Brunel’s main suspension bridge in London, the Hungerford Suspension Bridge was to be demolished to make way for a new railway bridge, so the chains were purchased and were a ready-made answer to the problem of buying and forging new ones.

Brunel’s rather flamboyant design – which included sphinxes on top of the towers – was toned down a bit by two engineers called William Barlow and Sir John Hawkshaw – and it was their simpler design that was eventually created, from the unfinished stone towers of Brunel’s attempts.

Work began in 1862 – but how did they do it?

A temporary bridge was created – just a walkway created by connecting six wire cables across the gorge and fixing planks across them with iron hoops. It was a walk not for the faint hearted – just two handrails were made from other cables.

But this gave access to string the chains across and painstakingly add more links until the first was created all the way across.

“When the first chain was complete the second was built on top, then the third,” said a spokesperson for the Suspension Bridge.

“With the chains complete vertical suspension rods were fastened to the chains by the bolts that linked the chains together.

“Two huge girders run the full length of the Bridge, visible to us today as the division between the footway and the road. Two long-jibbed cranes (one on each side) were used to move five-metre long sections of the girders into place where they could be attached to the suspension rods.

“Cross girders underneath formed a rigid structure. The floor of the roadway was then put in place using Baltic pine timber sleepers,” he added.

The saddles on the top of the towers were then capped off, and the bridge was complete.

How was the bridge built?

Folklore says that a the first rope across the gorge was taken by kite, or even by bow and arrow! The simplest and much more likely event was that common hemp ropes were taken down the side of the gorge, across the river by boat and pulled up the other side. These ropes were used to haul six wire cables across the Gorge, which were planked across and bound with iron hoops, making a footway.

Two more cables were added to make handrails – and at head height there was another cable, along which ran a ‘traveller’, a light frame on wheels that carried each link of the chain out to the centre.

As well as being a walkway the wire bridge acted as staging on which the chain rested as new links were added. The temporary bridge was anchored by ropes to the rocks below to provide stability in winds.

When the first chain was complete the second was built on top, then the third. With the chains complete vertical suspension rods were fastened to the chains by the bolts that linked the chains together.

Two huge girders run the full length of the Bridge, visible to us today as the division between the footway and the road. Two long-jibbed cranes (one on each side) were used to move 5 metre long sections of the girders into place where they could be attached to the suspension rods.

Cross girders underneath formed a rigid structure. The floor of the roadway was then put in place using Baltic pine timber sleepers.

In 1867 William Barlow who was one of the contracting engineers for the completion of the Bridge 1862-64, reported to the Institution of Civil Engineers that there had been two deaths during construction. This is the only documented record of which we are aware.

Materials

The chains and suspension rods are made of wrought iron.

The piers (towers) are built principally of local Pennant stone. The Leigh Woods (south) pier stands on an abutment of red sandstone. The Bridge deck is made of timber sleepers, 5 inches (12 cm) thick overlaid by planking 2 inches (5 cm) thick. Since 1897 the deck has been covered with asphalt.

Statistics

Total length, anchorage to anchorage 1,352 ft (414 m)
Total span, centre to centre of piers 702 ft (214 m)
Overall width 31 ft (9.5m)
Width, centre to centre of chains 20 ft (6.1 m)
Height (deck level above high water) 245 ft (76 m)
Height of piers, including capping 86 ft (26.2 m)
Height of saddles 73 ft (22.3 m)
Dip of chains 70 ft (21.3 m)

Crossrail to open ‘by March 2021 latest’… but Bond Street still facing delays

Click to follow
The Evening Standard

The Crossrail project has faced delays
The Crossrail project has faced delays ( )

ES News email

The latest headlines in your inbox

Register with your social account or click here to log in I would like to receive lunchtime headlines Monday – Friday plus breaking news alerts, by email

The central section of London’s beleaguered Crossrail project will open by March 2021 at the latest, those behind it have pledged.

But even by then Bond Street station will not be ready, the company revealed on Thursday.

The crisis-hit line, should have been opened by the Queen last December, will now open during a six-month delivery window with a mid-point at the end of 2020, Crossrail Ltd said.

It expects the section of the Elizabeth line between Paddington and Abbey Wood in south-east London to open during 2020, although it could be as late as March 2021.

It will initially run 12 trains per hour during peak times. 

Crossrail: January 2019 Posted September 10th 2019

However Bond Street is not expected to open at this time due to delays over “design and delivery challenges”, a statement said.

The firm said it is working to ensure the station “is ready to open at the earliest opportunity”. 

After the central section has opened, Crossrail said full services across the line from Reading and Heathrow in the west to Abbey Wood and Shenfield in the east will begin “as soon as possible”.

The company said that as work continues there will be regular “progress reports” for Londoners and “increasingly specific estimates” of when the line will open.

Tunnel vision: the completed track in Whitechapel (PA)

Crossrail Ltd said that there are four major tasks still to be completed: 

  • Build and test the software to integrate the train operating system with three different signalling systems
  • Install and test vital station systems
  • Complete installation of the equipment in the tunnels and test communications systems

Responding to the announcement, Mayor of London Sadiq Khan said: “I was deeply angry and frustrated when we found out about the delay to Crossrail last year. The information we had been given by the former Chair was clearly wrong.  

“We now have a new Crossrail leadership team who have worked hard over recent months to establish a realistic and deliverable schedule for the opening of the project, which TfL and the Department for Transport will now review.

“Crossrail is a hugely complex project. With strengthened governance and scrutiny in place, TfL and the Department for Transport, as joint sponsors, will continue to hold the new leadership to account to ensure it is doing everything it can to open Crossrail safely and as soon as possible.

Mark Wild, chief executive, Crossrail Ltd, said:  “I share the frustration of Londoners that the huge benefits of the Elizabeth line are not yet with us.

“But this plan allows Crossrail Ltd and its contractors to put the project back on track to deliver the Elizabeth line.

“Crossrail is an immensely complex project and there will be challenges ahead particularly with the testing of the train and signalling systems but the Elizabeth line is going to be incredible for London and really will be worth the wait.

“This new plan will get us there and allow this fantastic new railway to open around the end of next year.”

Tony Meggs, chairman at Crossrail Ltd, said: “The Crossrail Board will be holding the leadership team to account as they work to complete the railway.

“We will be open and transparent about our progress and will be providing Londoners and London businesses with regular updates as we seek to rebuild trust with all our stakeholders.”

The announcement of the new timetable for progress came as Transport for London’s (TfL) commissioner refused to resign over the delayed project. Read more Hope for Crossrail: a first look inside Tottenham Court Road station

Mike Brown declared that he is “fit to be in position” and has the “full support” of Mr Khan.

A report published by the London Assembly Transport Committee on Tuesday stated that Mr Brown, who has held the role at TfL since September 2015, “altered key messages of risk” on deadlines on the project which were sent to Mr Khan’s office.

The report recommended that Mr Brown, appointed by Boris Johnson when he was mayor and paid at least £350,000 in 2017/18, “reflect(s) on whether he is fit to continue to fulfil his role”.

Giving evidence to the committee on Thursday, Mr Brown said: “I’m not reflecting on whether I’m fit to be in position. I believe I am.

“I’ve got the full support of the mayor and that’s the end of that issue from my point of view.”

Mr Khan’s office has said he has “every confidence” in Mr Brown, adding that the previous leadership of Crossrail were responsible for providing “inadequate information” about the delays.

Crossrail’s delay has resulted in a row over when Mr Khan knew the railway would not open on time.

He claims he only found out on August 29, two days before Londoners were informed, but Crossrail Ltd’s former chairman Sir Terry Morgan insists the mayor was aware of problems at least a month beforehand.

Sir Terry resigned as chairman of HS2 Ltd and Crossrail Ltd – a TfL subsidiary – in December.

The project’s budget has fluctuated from £15.9 billion in 2007 to £14.8 billion in 2010.

But due to the cost of the delayed opening, a £2 billion Government bailout of loans and cash was announced in December.

Meet the man who built a Spitfire from scratch – starting with a single rivet Posted August 27th 2019

Save

Martin Phillips's Spitfire
Martin Phillips’s Spitfire, wearing temporary silver paint so it can stand in – if needed – for the Silver Spitfire set to circumnavigate the globe this summer; here, it is having its wings reattached after being transported to Geneva for an event with the watch company IWC Credit: James McNaught

6 June 2019 • 8:17am

If Martin Phillips is honest, he brought it upon himself. It was November 1999, a few weeks before the Devonian plant-hire owner’s 40th birthday, and he’d recently been “chucking it about” with friends that he could – and absolutely would – build an aircraft one day.

The boast was repeated and challenged, and soon he specified that it wouldn’t be any old plane, either. He would build a Spitfire.

“My birthday party came along, and my mates presented me with this massive great box, saying, “Let this be the first part of the aeroplane you’re going to build.” I just looked at it. I had no idea what was in there.”

The size of the box turned out to be a joke. Inside, hidden among a lot of polystyrene, Phillips’s friends had placed nothing but a single, tiny pop rivet.

“I was half-cut – well, completely cut by that stage, we all were – and I said, “Right. On Monday morning I’m going to go out and find a Spitfire and prove you all wrong.””

Chipmunk plane
Martin Phillips’s plane collection includes this Chipmunk, on which he is doing pre-flight checks, as well as a Spitfire Credit: James McNaught

Looking back on the pledge today, Phillips, now 59 but just as stubborn, titters at his innocence. “Just go out and find one… Unbelievable. Do you know how difficult that is? I didn’t have a clue. That next Monday I went to Exeter Airport, because it seemed like the natural place to go, and I asked if anyone had any Spitfires lying around.

That’s how naive I was. I realised I knew what a Spitfire looked like, because we all do, but I didn’t actually know what the wreckage or parts of one looked like. So I had to educate myself.”

Designed by RJ Mitchell in the early 1930s, the Supermarine Spitfire arguably soars higher than any other aircraft in the hearts and minds of the British public. More than 20,000 were produced in less than a decade – a greater number than any other plane in the Second World War – and its heroics at the Battle of Britain and beyond swiftly made it a key cog in Britain’s war effort. Enemies coveted it; the Allies adored it.

Martin Phillips in his Spitfire
“I remember when it taxied out, I looked at it and thought about all those bits. And then I was in bits. I was just crying; I was so ecstatic to see it,” says Martin Phillips of the day his Spitfire first flew Credit: James McNaught

Even today, the unique elliptical design of its wings (which rendered it the most agile fighter in the skies) make it recognisable in silhouette at 30,000ft. And if the cloud’s low, the roar of the Spitfire’s Merlin engine remains unmistakable.

Phillips had never built a plane before, preferring motorbikes and diggers, but for the next 13 years he learnt about the Spitfire and its assembly from books, the internet and expert contacts.

Inspired by his single rivet (there are about 80,000 in any one Spitfire), he hunted for the rest of the parts by touring first the south-west, then the UK, then the rest of the world.

Rolls-Royce engine inside a spitfire
Phillips had never built a plane before, preferring motorbikes and diggers, but for the next 13 years he learnt about the Spitfire and its assembly from books, the internet and expert contacts Credit: James McNaught

He recruited a team of 50-odd helpers, and set up a workshop in a shed beside his home. He spent an enormous amount of time and an enormous amount of money – around £2.5 million. He had a few moments, temporarily, when he wondered if it’d ever happen, but he never lost faith. And by the tail end of 2012, he had made good on that drunken promise: a single-seater, Mark IX Supermarine Spitfire, meticulously rebuilt from scratch, took off from Filton Aerodrome in Bristol.

“I remember when it taxied out, I looked at it and thought about all those bits. And then I was in bits. I was just crying; I was so ecstatic to see it. And then off it went, up in the air,” he says. He pauses for a moment. “And then it came back too!”

That plane (officially named RR232, but called City of Exeter) has since flown countless times as part of the fleet operated by Boultbee Flight Academy at Goodwood, which provides flights and training in Spitfires, but now there is a chance it could be needed for a greater test than Phillips ever envisioned.

Spitfire plane
That plane (officially named RR232, but called City of Exeter) has since flown countless times as part of the fleet operated by Boultbee Flight Academy at Goodwood Credit: James McNaught

This summer, the two co-founders of Boultbee, Matt Jones and Steve Brooks, plan to become the first pilots to circumnavigate the globe in a Spitfire when they take off in a polished-silver Mark IX from southern England, head for the Atlantic and only return to British soil three months later.

Named “Silver Spitfire – The Longest Flight“, the expedition will see them make more than 150 stops in over 30 countries, including many territories in which a Spitfire has never been seen before. And along the way, in preparation and in the air, The Telegraph will be reporting on the team’s progress.

The aircraft Jones and Brooks will be flying was bought at auction over two years ago, and is undergoing a painstaking refit, the installation of a few modifications and a significant outfit change – a small Union flag and the logo of IWC, the Swiss watch manufacturer that is helping to sponsor the trip, will be the only flashes of colour on a livery that’s otherwise just sleek, polished silver – ahead of its mammoth flight.

Already, it’s dazzling to look at: an icon of British engineering, stripped and burnished to become a thing of arguably even greater beauty.

But what if there’s a problem with it? What if, heaven forbid, they need to replace it? That’s where Phillips comes in.

“I’m a Murphy’s Law kind of guy: I think if we have a back-up plane then we definitely won’t need it, but if we didn’t arrange anything, we definitely would,” Jones, 44, says, sharing a sofa with Phillips at the former’s home in Gittisham, Devon.

“It isn’t having all the same modifications [a few things, such as extra fuel tanks to make it better suited for long distances, improved electronics and a GPS are going into the Silver Spitfire, and its machine guns have been removed] but it currently looks the same; they’ve been painted the same colour for a show next week.”

Phillips, an ebullient, round-faced fellow with an accent like clotted cream and the permanent smile of a man who still can’t quite believe he pulled the whole thing off, stops him. “Mine’s not actually quite as shiny as his. He’ll have to get up to polish his every morning to keep it like that.”

Were RR232 to be needed, it would be quite a next chapter for an aircraft with an already astonishing story. Phillips’s happy-go-lucky exterior belies a formidable knowledge of the aircraft and its workings, Jones says. Phillips shrugs, but repeats that he once knew absolutely nothing.

a fleet of spitfires
More Spitfires were produced than any other British aeroplane during the Second World War Credit: Rex Features

“As an example of how little I knew, in the early days there were two words I came across for parts – “aileron” and “empennage” – that not only did I not know what they were, I didn’t even know how to pronounce them.” The aileron, he later learned, is the little flap on the aeroplane’s wing that helps it to roll. The empennage is the aeronautical name for the tail assembly.

Going about finding the parts proved a curious mix of remarkably easy and nigh-on impossible. There were around 22,000 Spitfires built between 1936 and 1948, yet today there are only a few hundred left in the world, of which about 50 are airworthy.

Many of those missing will have crashed or been shot down over the years – including hundreds in the Battle of Britain, at which the Spitfire aided the Hawker Hurricane to down 1,887 German planes in little more than three months – and others, especially those that were sold to overseas air forces, ended up in scrapyards. Some are simply lost. It means that there could be parts hidden just about anywhere, as Phillips found out.

“I was almost losing hope early on, but then I got a call from a bloke who said he knew where there’s a Spitfire in Sussex. Or most of one, anyway,” he says. Through it all, his wife, Jill – one of several deeply understanding spouses attached to this story – was a calming voice of encouragement, and she joined him, along with their three children, on the trip to Sussex.

“I got the kids up at the crack of dawn one Sunday morning and met him at Shoreham roundabout at 7am. Then we went down some pretty dodgy roads, into a valley, and there was a battered 1944 Spitfire: RR232.”

It was only a “ropey fuselage, empennage and some other bits”, but it was something to work with. Phillips bought it for £70,000 and refitted it while looking for the rest. He found an original seat (which is made up of just shy of 400 parts on its own), collected thousands of rivets from all over the place, bought one wing from a police station, where it was “being used as evidence for something”, and another from a friend who lived locally and had a Spitfire wing in his garden. He got that one for £50.

Spitfire engine
Whenever Phillips found more than one of something, he’d buy the lot, including four Merlin engines; it now means he’s the go-to man for original parts Credit: James McNaught

Bit by bit, he got there. “One thing you have to remember is that at any one time, there are always three or four other collectors or aviation enthusiasts looking for Spitfire parts too, so when one is found, it’s a race to get there first and pay the money,” Jones says.

And whenever Phillips found more than one of something, he’d buy the lot, including four Merlin engines. “It now means he’s the go-to man for original parts.”

He’s far from got them all, however. As part of Silver Spitfire – The Longest Flight, and inspired by Phillips’s discoveries, The Telegraph is issuing a call to arms: do you have a bit of old Spitfire in your garage or garden? If you suspect so, we’re urging you to take a photograph and send it through to us at yourstory@telegraph.co.uk so we can have The Longest Flight team inspect it. It may prove to be a crucial element needed to bolster the survival of this aeronautical icon.

“Through this whole process, we’re seeing just how important this plane is to people all over Britain, and just how far the parts have spread out now,” Jones says.

“There are an enormous number of people in this country with a bit on their shelf or in their shed, and we’re appealing for people to let us know what they’ve got, both so we can keep this beautiful aircraft in the air for as long as possible, and for us to have some spare parts for the trip.”

Phillips, who is now learning to fly planes himself as well as building another Spitfire, nods along emphatically. His aircraft may or may not get the call to circumnavigate the globe, but he knows the power of a single, lost part as well as anyone. All it takes is a rivet.

The Telegraph is the official media partner of Silver Spitfire – The Longest Flight. To find out more about the project, visit telegraph.co.uk/silver-spitfire and silverspitfire.com